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Ambiguity Resolution
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Ambiguity resolution Techniques

As a driven problem to study the ambiguity fixing, we will consider the
problem of differential positioning in DD for short baselines (e.g. < /0 km).

In general we will consider that we have Code and Carrier measurements in
different frequencies (¢=1,2...),i.e. P, P, L, L,...

Short baseline
ik ik ik ik k. . : ik ik .
B =P ¥ T 1, Ve s q=12... T/ ~0 P = P4y ,{u, qg=12...
9
I* ~0
Jk Jk j Jk Jk Jk q,ru Jk Jk Jk
L, =p, +T, -1, +4 0, +AN; +VL » S0 L., =p+2 qu+v ’

To simplify notation, when different frequencies are
considered, we will remove the subscript “ru".—>

K sat. in view = K ‘SD’ Y

= K(K-1) ‘DD, P = p’* g=12..
but only K-7 DDs are

linearly independent Lfk = pfk _|_/1 Jk

We assume the following measurement errors:

L ~0.5m o, ~1m Take the highest elevation as the
! ! reference satellite to minimize
o, ~0.5cm @7, Pl measurement error.

As commented before, the ambiguity terms are integer numbers, and we can take benefit
of this property to fix such ambiguities applying integer ambiguity resolution techniques.
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@ Resolving ambiguities one at a Time

A simple trial would be (for instance using L1 and P1):

jk _ pik K 4y k o _| L —B"
roundoff’

4
A, =20cm
o, lm N 1 ~5
L~ Capr S 0w
O'L{k ~lcm
: N+l Too much error (5 wavelengths)!
R e N+1/2 Note that, assuming a Gaussian
' N distribution of errors, o =1/2
N_1/2 guarantee only the 68% of success

N —1 |Asthe ambiguity is constant (between
cycle-slips), we would try to reduce
uncertainty by averaging the estimate on
time, but we will need 100 epochs to
reduce noise up to Y2 (but measurement
errors are highly correlated on time!)

Similar results with L2, P2 measurements
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L1-F1 ambipuity fixing: IHD1-IHD2: 7.188m baseline:; 2813 652

15 .

cycles of L1

' pD{L1-P1} +
DONL 1+

W
g
15 :
2088 4880 6a88 8080 10666 12888 14666 16888 1568066 20808
tine (=)
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L2=-P2 anbiguity fixring: IND1-INHD2: 7.188n

baseline: 2813 852

15 .

cycles of L2

| DD{L2-F2)
DDH2

+

20088 48088

680808

8080

18088
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@ Resolving ambiguities one at a Time

Dual frequency measurements: wide-laning with the Melbourne-Wibbena

combination
N, =N,-N,

jk _ _jk jk " "

B =p TV ij_flplj +sz2] _ Nk jk A, = € ~862cm

" 7 - N =p +VPN —f,

P =p" +vy St 1

: , ; . : L*— £ 1* . . . O'_,kzO'_,k/\/Ezﬂcm
L = p™ + 4, N/* +v]* Liﬁ=fl L Sk = p* 4 A, NFE gy |

1 : a fi—=f g GLﬁz6aL{kz6cm
Ly = p™ + 2, N +v/ !

& pik _ Jk | ik o | IF—PF
LW PN —ﬂWNW +VPN —> NV]V :|: w N
XIW roundoff

/

Fixing v, (after fixing V) 7

1 Tlem
O ., R—O0 , & =~ 0.
Moo A, N 86.2cm

L{k _sz'k =4 Nljk -4 szk +Vquk—L2
= (4 —A,) N/ + L,N;; +v}

Ll Now, with uncorrelated
4 =19.0cm X x5 Nk measurements from 10
=24.4cm N/ =| 2 2 2w - :
A i P epochs will reduce noise
A=A =54cm ) 2 roundoff | | Up to about V4.

al{kzlcm
/ 1 \/7]k~1'4cmz1/4

AL AL AL O., ~ 20'~
S iR
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7.188n baseline: 2813 852

Hide-=Lane anbiguity fixing: IND1-IND2:

cycles of Lw

DD{Lu-Pn}

168808
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Hide-Lane anbiguity fixing: IND1-INDZ2: 7.188n baseline: 2813 852
4 T T T T T T

' DD{Lu-Pn} +
. A

: : : : : : : L+
3 AR S R R S LR SRR 7

:‘1'|_++

et

cycles of Lu

1 1 1 1 1 1 1 1
2088 4888 6888 Gaea 168848 12880 148808 168808 1586808 2688680

tine (s}

Once the integer ambiguities are known, the carrier phase measurements
become unambiguous pseudoranges, accurate at the centimetre level (in DD),
or better.

Thence, the estimation of the relative position vector is straightforward
following the same approach as with pseudoranges.
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@ Exercises:

1) Consider the wide-lane combination of carrier phase measurements

L,= fli’;_f;sz , Where L, is given in length units (i.e. L,= A, ¢, ).

Show that the corresponding wavelength is: 4, =—

L=t

Hint:
Ly= Ay by Op=0,—0,

2) Assuming L, L, uncorrelated measurements with equal noise o,,

show that: )
Vietl :(flJ

g

GLW:
Y12 -1
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Three Frequency measurements:

We still consider the above problem of relative positioning in DD

for short baselines (e.g. < 710 km) = lonosphere, troposphere and wind-
up differential errors cancel.

With three frequency systems,
L1 154x1023MHz  4,=0.190m  4,—4,=0.054m having two close frequencies it

L2 120 x 10.23 MHz ~ 4,=0.244 m Ay = 0.862 m is possible to generate an

extra-wide-lane signal to
L5 115 x 10.23 MHz /15 =0.255m A‘EW =5.861 m enable the sing|e epoch

ambiguity fixing
We drop here the superscript (jk) for simplicity 1 ==; 4 = Ay =—
fi fi— fz =
L=p +AN, +v, ;i=125
’ 2
L 7L o = 7/12"'10_lq ~5,7cm ]/12=(f1/f) (77/60)
_Ji T Jatn 7 4 -1 5
Ly = p +hy Ny tv,, - — Vs =(fo ! f5) = (24/23)°
Vs
L —fL o, = o =~33,3cm
2 5
1 N,., =N, —N
P _f1P1 + /6 — 5 S o, =\/7/12+ o, ~0,712m EW 2 S
Uy a1
Exercise:
P, + f.P. _NTstl ) .
- :ﬁ; ij} - % = a1 ~%707m | Justify the previous
25 .
2 -3 expressions for o.




We still consider the above problem of relative positioning in DD
for short baselines (e.g. < 10 km) = lonosphere, troposphere and wind-

up differential errors cancel .

L1

154 x 10.23 MHz 4,=0.190m  A4,-4,=0.054m
L2 120 x 10.23 MHz 1,=0.244 m Aw = 0.862 m
L5 115 x 10.23 MHz A5;=0.255m Aew =5.861 m

Ny =N, =N, ; Ng =N,—N;
A L — P 1
EN &> O ~
EW
EW roundoff’
_ ﬂ’EWNEW_(LEW_LW) < >0 zi
= /1W N, Z’W Lew
roundoff’
M 1
~ L—-L -4 N ~
21 o 22 2
roundoff

L=p +4N, +v, o, ~0o, ~lem
Ly=p +4, N, +v, o, xo, ~lm
Ly=p +Ay Ny +v, Py=p +v,
LEW:lO +1EWNEW+VLEW PEN P +VPN
0.71m _ . . =(41 1) =(77/60y
5861m c=(f/ 1) =(24/23)
VT, ~0,71m
\/7/12"'1 1
_333cm [
~0.39 o, = 7/25+10' ~0,71m
" 86.2cm Py +1 B
+1
o, = AE: 1quz5,7cm
W 7/ _
21 ~1/4 - 1
+
o o, Vs o, ~33,3cm
EW [7/25 _1 1

www.gage.upc.edu
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Exercise:
@ Repeat the previous study for the Galileo signals E1, E5b and E5a

o, ~O, ~lcm

L=p +A4N, +v, b 2
El 154 x 10.23 MH A,=0.190 m A,—4,=0.058 m ~ ~
X £ M 270 Li=p +4LN,+v, | |0, ®0, =#lm
E5b 118 x 10.23 MHz 1,=0.248 m Ay =0.814 m -
E5a 115x 10.23MHz  4,=0.255m Aeyy=9.768 m | Ly =p +Ay Ny v, By=p +vp
Wy = /D gy W g Vi, By =p TV
2 2
. L., —P 1 7. =(fi/f,) =(17/59)
| B |: /IEW roundoff - JEW ” 23~ (f2 /f;) = 18/115)2
ANt +1 ~ ]
\/712+1 i
Vo (L. — 1
NW:|:1EWNEW (LEW Lw):|< > O-A‘, ng_L z[ ] o _ )/25+10_ z[ ]
W EW Pry it
AW roundoff’ 725 +1
¥, +1
v R | 0, = }/12 _101q z[ ]
N _ LI_LZ_ﬂQNW “—> o, = \/50' z[ ] .
1 =2 Ak s +1
2 roundoff O-LEW = GLI z[ ]
Va5 —1
www.gage.upc.edu @ J. Sanz & J.M. Juan
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Exercise:

7 AN - o, =0, =lem
1 =P 1 TV 2
E1l 154 x 10.23 MHz A,=0.190 m A,-1,=0.058 m ~ ~
4 270 L=p +4LN,+v, | |T, ®0, ~1m
E5b 118 x 10.23 MHz 1,=0.248 m Ay =0.814 m
E5a 115x 10.23 MHz ~ 4,=0.255m Aew=9.768m | Ly =p +A4, Ny +v, By=p +vp
Ly =p +/1EWNEW+VLEW By =p TV
2
N LEW_PEN o N 1 0.71m ~0.0 7/12:(f1/f2) :(77/59)2
Ew — /IEW o NEW /IEW FPey 9768m ' " :(f‘z/f;)z :(118/115)2
I rounao,
ANt +1
~0,71m
\/712+1 i
o Aoy Ny —(Lew — Ly ) lso zig 549cm~0.67 st
W N, ﬂW Lew f1.4cm O-P O-P 0,71m
Ay . . EN Vos +1 7
roundoff’
A7 tl -
M 1 l4c % T a1
N L—L, -4 Ny €«——> 0, ~ \/50 : ~1/4
1 — Moo -4 v 5.8cm +1
A =4, 2 A7 -
roundoff’ GL = O-L ~54.9cm
EW [7/25 _1 1

Repeat the previous study for the Galileo signals E1, E5b and E5a

www.gage.upc.edu
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@ Resolving Ambiguities as a set
As a driven problem to study the ambiguity fixing, we will consider problem of

differential positioning in DD for short baselines (e.g. < 10 km). To simplify, we
will consider only carrier measurements at a single or dual frequency.

Static position| Equations Unknowns

L2(6)= p™(1)+ N2 + 02 (1)

Single frequency| (K-1)* n, 3+(K-1)

g=12...

< L)(t)=p" )+ N, +v, () Dual frequency | 2(K-1)*n, 3+2(K-1)

Kin. position | Equations Unknowns

LLIqK_l t)=p" )+ N+, (@) Single frequency| (K-1)* n, | 3* n+(K-1)

Dual frequency| 2(K-1)*n, | 3* n,+2(K-1)

In principle, the estimation of ambiguities in this system
is not a big problem if we can wait enough time
and the unmodelled errors are not so large.

Linear Model:

L]
¢¢¢¢¢

K=>24, n =22||K25, n =4

Each epoch brings a set of (K-1) DD
(i.e. equations) for each frequency.
Note: n, is the number of epochs

Ly (t)= p’k(r>+ka+vfk<t>T> )= p," t)=P,

KA, (1) + AN +v (1)

Jk Jk ]k Prefit-residual
-p (t) p@)—p (@) Ar (1) vt

We can estimate all parameters (position and ambiguities)
as a set by considering the over-dimensioned system
of linear equations and solving it by the LS criterion.

G(t) l

y(t)=G(t) Ar(t)+ AN + v

21




Resolving Ambiguities as a set

y(ti) — G(ti) Ar(ti) + AN+ V(ti) Single Freq: K=K-1
Dual Freq. : K=2(K-1)

K Kx3 3 K

vector matrix  vector vector

For static positioning, considering two epochs (for instance):

{ y(®) } { G(,) }AFMHN{ v(t,) }
y(ti+1) G(ti+1) I v(ti+1)

In general, mixing several epochs, we will write: |y = G Ar + AAN+vV

Using the least-squares criterion, we can look for a real valued 3-vector Ar
and a K-vector of integersN that minimizes the cost function (sum of
squared residuals):

c(Ar,N) = ||y —GAr+ A AN” Weighted norm can

be taken as well

The problem can be easily reformulated for the kinematic case. Kalman filtering
can be applied as well.

www.gage.upc.edu @ J. Sanz & J.M. Juan
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Resolving Ambiguities as a set

Different strategies can be applied:

e To Float the ambiguities (i.e. treating the ambiguities as real numbers).

e To Search ambiguities over a limited set of integers to ‘find the best
solution’.

e To solve as an Integer Least-Squares problem.

For an observation span relatively long, e.g. one hour, the floated ambiguities
would typically be very close to integers, and the change in the position
solution from the float to the fixed solution should not be large.

As the observation span becomes smaller, ambiguity resolution play a more
important role. But very short observation spans implies the risk of wrong
ambiguity fixing, which can degrade the position solution significantly.

The performance, is thence measured by:

1. Initialization time
2. Reliability (or, correctness) of the integer estimates

www.gage.upc.edu @ J. Sanz & J.M. Juan
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@ Search techniques

Strategy: AR (
o IS s v (3 B O
- Define a volume to be searched AATA
L /l
 Set up a grid within this volume |2 ; /L "

 Define a cost function (e.g. the sum of squared residuals)
« Evaluate the cost function at each grid point

Solution corresponds to the grid point with the lowest value of the cost function

Position domain Ambiguity domain

LSAS (Hatch, 1990)
Ambiguity Function Method (AFM) LAMBDA (Teunissen, 1993)
ARCE MLAMBDA (Chang et al. 2005)

............ OMEGA (Kim and Langley, 2000)
FASF (Chen and Lachappelle, 1995)
IP (Xu et al., 1995)

www.gage.upc.edu @ J. Sanz & J.M. Juan
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@ N Search techniques LA el
A —_ ,f_ / 3_ —;;‘-.-/:-—* x
N-o Sy N+o rk| 1. /m’ L
A conceptually simpler approach would consist on: A e

.

- Estimate the floated solution N and its uncertainty(e.g. N=2502347.74 cycles, o, =0.6cycles)
» Define as a volume to be searched (e.g. 130, =12 cycles)and

evaluate the cost function (the RMS residuals) over the 6 ambig.: 2502345, ---,2502350

The previous search must be done for each satellite in view.
- If there are 5 satellites tracked = 4 DD ambiguities = 6* = 1 296 combinations
- If there are 8 satellites tracked =» 7 DD ambiguities = 67 =279 376 combinations

The integer ambiguity solution corresponding to the smallest RMS residuals is
used to select the candidate. However if two or more candidates give roughly
similar values of RMS, the test can not be resolute.

=> A ratio test (of 2 or 3, depending of the algorithm) between the two smallest RMS
is often used to validate the test.

If the ratio is under these values, no integer solution can be determined and is
better to use the floated solution.

www.gage.upc.edu @ J. Sanz & J.M. Juan
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LAMBDA Method

Consider again the previous problem of estimating Ar, a 3-vector of real
numbers, andN a (K-1 }vector of integers, which are solution of

y=GAr+AAN+v min|y -G Ar—1AN

W

To better exploit the internal correlations [*], we consider now the
covariance W, = Py‘1

Let be the float AF AR P, P_.
solution and N ; Cox{ . }: :

- . P . P.
covariance matrix: N Af,N N

It can be shown the following orthogonal decomposition:

+AYIN=N

y—GAr—-AAN|[. =|ly—-GAF-1AN
Wy

2 A
we + HAr —Ar(N)

2
Wik (v

2
W,

N

\ )
|

Residual of real-valued
floated solution (Af, N)

[*] Remember that DD measurements are correlated, as already seen.




LAMBDA Method

Thence, we have to find Ar a 3-vector
of integers minimizing:

of real numbers, and N a (k-1 )vector

[y-Gar-AAN[, =|y-GAf-2AN

Cdar—aRN L+ 22 IN-R
Wy

2
Wi

2
Wai (v

\

\ } \ }

Y
This term is irrelevant for
minimization since it does
not depend on Ar and N

Float solution and covariance matrix:

{Af} AR P, P__
A » Cov| . |= ’
N N PAf,N PN

w!=P. W

N N Af',ﬁl

—P.

AF,N

| |
This term can be This term must
made zero for be minimized

any N / over the integers

minHN—N — N

2
Wi

Ar = AR(N) = AF - W, W' (N-N)

The vectors Ar and N are often
referred to as the fixed user solution
and fixed ambiguity.

www.gage.upc.edu
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@ LAMBDA Method

The integer search: Finding the integer vector N that minimizes the cost function

¢(N) = HN—NH; =(N—N)T W, (N-N) W, =P,

e A diagonal Wy matrix would mean that the integer ambiguity estimates are
uncorrelated.

o If the weight Wy matrix is diagonal, the minimizing of the cost function is trivial. The
best estimate is the float ambiguity rounded to the nearest integer. 7

1/0.% 0 C(N)z(Nl_Nl )2+(N2—N2)2 /’\
N | 7

WA = M (72 0_2
N 0 1/0'2 My Naly
n Ellipse parallel to coordinate axes

In practice, the estimated (float) ambiguities are highly corre- 77777
lated and the ellipsoidal region stretches over a wide range of -
cycles. This is specially the case when the measurements are -
limited to a single epoch or only a few epochs. 1

Thence, points that appears much further away from the 5
floated solution may have lower values of cost function than -
those which appear nearby. In this context, the search for -

integer vectors can by extremely inefficient. s 2-1 01 28 4667
30




can be transformed so that the elongated ellipsoid turns into a sphere-like.

@ To improve the computational efficiency of the search, the float ambiguities
Thus, the search can be limited to the neighbours of the floated ambiguity.

The idea could be to apply a transformation that decorrelates the ambiguities so that the
matrix W becomes diagonal. As W is a positive definite matrix and thence, it can be always
diagonalized (as a real-valued matrix) with orthogonal eigenvectors. But the problem here
is that the integer ambiguities N must be transformed preserving its integer nature!

Thence, we are looking for an “integer-valued” transformation matrix Z that makes the
matrix W as close as possible to a diagonal matrix (decorrelating as much as possible
the ambiguities) and with (as much as possible) similar axes (spherical).

Moreover, the inverse of transformation

N' = Z N matrix Z1 must be also integer, to transform
B P. =7ZP. 7" back the results after finding the ambiguities
A N’ N
N'=ZN Note that Z, Z~' integers = ‘det(Z)[ =1

(i.e. it is a volume-preserving transformation)

1.5

7

Pictures
from
[RD-6]

7654321012345 6 7 153 5 08 15

www.gage.upc.edu @ J. Sanz & J.M. Juan
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Exercise:

Show that:

Z, 7' Integers = ‘det(Z)‘ =1

That is, Z is a volume-preserving transformation

www.gage.upc.edu
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@ Decorrelation: Computing the Z-transform

The following conditions must be fulfilled:

1. Z must have integer entries

From [RD-4]

2. Z must be invertible and have integer entries
3. The transformation Z must reduce the product of all

ambiguity variances.

Note that Z, Z~' integers = ‘det(Z)‘ =1
(i.e. it is a volume-preserving transformation)

, _[1 0
P [pzm pzm] Yl 1

Gauss manipulation over matrix P=W-1 can be applied to find-out the matrix Z.

=» Transforms N, (N, remains unchanged)

o, = —int[pmm /pﬁiﬁi}

Z,= 0 1 } =>» Transforms N, (N, remains unchanged)

Note: Inverse matrices have also integer entries

Z—l — 1 O Z;l — 1 _aZ
! -, 1 0 1

Start transforming first the
element with largest variance.

www.gage.upc.edu
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Gauss manipulation over matrix P=W-! can be applied to find-out the matrix Z

z - 1 0| 3 Transforms N, (¥, remains unchanged)
Pyx,  Pria, a, 1 .
Pyr, Pryr, 1 a,
Z, = 0 1 = Transforms N, (N, remains unchanged)
Example L0s] . [534 384 Example
= « = from [RD-4
1.30 NT1384 280 rom [RD-4]
Step 1: 1 —1 _ We transform first the element with
5 = {O 1 } o, =—int _38.4/28.0] = —1— largest variance (in this case N,)
NOTRINTE 0 1 384 280|[-1 17| 104 {28 64— at most!
In general,
Step 2: 1 0 to increase the
Z, :{ } o, =—int[10.4/4.6] =2 number of small off-
-2 1 diagonal elements,
Freneren we have to
= T _ L RS RE A | DR _ 46 L2\ transform first the
P, =ZP,Z isioned
N N -2 11/104 28.0]10 1 1.2 :14.8| elements with
"""" largest variance




— Example and
7 - -l 7. = 0 pictures from
> [0 1] L2 [RD-4]
N, A Ay
A A A
i e FHTE e
5T 7] I 5 f / 9
: panunn Amyimr ¥ iyan
£ I A+ — ' -+
0 s%an | >0 1 -G
| P ! mni/ N
Pe% f ¥ RN
gt [ N T
- S o B L |
5 0 5 & S 0 s 50 s &
p _[534 384 b _[46 104 [46 12
Y1384 28.0 V104 28.0 MU12 4.8
I 01 -1 I -1
Z-77,= =
—2 1]/0 1 -2 3

P =2P Z' {

1

|

53.4 384

38.4 28.0

1

E

3]

46 1.2
1.2 4.8

www.gage.upc.edu
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. [1.05 53.4 384 46 12
N = P, = P, =
1.30 N384 280 12 48

N, Ny
A A
R T LEr 1 -1
ST | | 4= 3
: Papy.d } -2 3 Pz
1 ri
0 : Py ! oL +<i
NP : g MW
7 l ]
HA r : t—+ =
5 -5 T
5 0 5 A

. . 1 -1][1.05 —0.25 - [=0.25 0
N'"=ZN = = N"=1int =
2 3 11.30 1.80 | 1.80 2

www.gage.upc.edu @ J. Sanz & J.M. Juan
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@ Let P be a symmetric and positive-definite matrix:

1
P :{pu p12:| A :E(pll +p22+w)
P Px» 1
l 4, :E(pu"'pzz_w)
W:\/(pll_p22)2+4p122
, F« 0}
P = )
0 4 tan2¢:—p12
P~ P
Example: N;
A
53.4 384 .~ |1.05 T —
PA - N:|: i| 5 f A |
N 1384 28.0 1.30 i AT
l 0 : A i
JA =\BL.14=90 7 |
P 81.14 O T =035 =03 1D4% i
N0 025 e & _

tan2¢ =3.02 = ¢ =3585 5
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Consider again the previous problem of estimating Ar, a 3-vector of real
numbers, and N a (K-1)vector of integers, which are solution of

y=GAr+AAN+v

The solution comprises the following steps: .
Ar Pi  Pux
1. Obtain the float solution and its covariance matrix: | N P.. P
2. Find the integer vector N which minimizes the cost function
~ |2 ANT ~ __ oI
c(N)=[N-N| =(N-N) w,(N-N) Wi =P

a) Decorrelation: Using the Z transform, the ambiguity search space is
re-parametrized to decorrelate the float ambiguities.

b) Integer ambiguities estimation (e.g. using sequential conditional least-
squares adjustment, together with a discrete search strategy).

c) Using the Z! transform, the ambiguities are transformed to the
original ambiguity space.

3. Obtain the *fixed’ solution Ar, from the fixed ambiguities N.
y—-AAN=GAr+v

www.gage.upc.edu @ J. Sanz & J.M. Juan
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b) Integer ambiquities estimation

Several approach can be applied:

e Integer rounding Comment:

e Integer bootstrapping In principle, the previous transformation Z.
Is not required by the estimation concept;
it is only to achieve considerable gain in

° speed in the computation process [RD-5].

e Integer Least-Squares

b1l) Integer rounding

This is the simplest way.

Just to round-up the ambiguity vector entries
to its nearest integer

N:(int(Nl),...,int(NK)) . ~

For instance, in the previous example:

- 1=0.25 0
N"=i1int =
{ 1.80 } {2}

www.gage.upc.edu @ J. Sanz & J.M. Juan
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@ b2) Integer bootstrapping (from [RD-6])

It makes use of integer rounding, but it takes some of the correlations

between the ambiguities into account.

1. We start with the most precise floated ambiguity (here we will assume N )

2. Then, the remaining float ambiguities are corrected taking into account

their correlation with the last ambiguity.

N, =int [Nn]

e

N, = int[Nn_1|n] = int[Nn_1 —o

n

A

Nn—l’Nn Nn

. % . Yo - 2 (xr
N, —1nt[NM]—1nt[N1 ZZ: GNI,N,-|10Ni|1(Ni|’

1

.)}

N

Using the triangular
decomposition

T
P =L DL

-2
l. =0c. . O

N. i Stands for the i-th ambiguity obtained through a conditioning of the

previous I={i+l,...,n} sequentially rounded ambiguities.

www.gage.upc.edu
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Example and pictures from [RD-6]

ask o ....... Fhoat.

05 Conditional
estimate | v
; Nl|2 .

Figure 2.2: Principle and 2D pull-in regions for integer bootstrapping: parallelograms.

N, = nint[Nz] =0 N, = nint [Nm] = nint [Nl -0 0'];2 (NZ —-N, )} =1
www.gage.upc.edu @ J. Sanz & J.M. Juan
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@ b3) Integer Least Squares (ISL) (from [RD-6])

1. The target to find the integer vector N which minimizes the cost function
=(N-R) P/ (N-N) W, =P

¢(N) = HN N

2
Ps

2. The integer minimiser is obtained through a search over the integer grid
points on the n-dimensional hyper-ellipsoid: (N—N)T P’ (N—N) <

« Where »° determines the size of search region.
« The solution is the integer grid point N, inside the ellipsoid, giving the
minimum value of cost function ¢(N).

-2
where: d, = o
Niu

-2

Using the triangular decomposition: P, =L'DL |/, =0, . o

L Nj’Ni\I Ni|1
(N8 LD L (N £ (NN D (NN
Defining: /l — — 5 -
N=N-L'(N-N)> L' (N-N)=(N-N) C(N)Z(NI_NI) L(Va-N) +"‘+MSZ
dl dZ dn
www.gage.upc.edu @ J. Sanz & J.M. Juan
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- + oo b <y
dl d2 dn l
But &, depends on N.i» >N, .
J— A NI’Z:]/\\TI’I
L'(N-N)=(N-N)—|_ ) >
N =N+ Y (N=N) i=n—ln-2,.,1
J=i+l
Search region bounds:
N,-d”?y < N < N +d"y v

Acceptance test: The integer ambiguity solution corresponding to the
smallest RMS residuals is used to select the candidate. However if two or more
candidates give roughly similar values of RMS, the test can not be resolute.

=> A ratio test (of 2 or 3, depending of the algorithm) between the two smallest
RMS is often used to validate the test.



Ellipsoid size: selecting the candidates for the acceptance test

The size of the ellipsoidal search region (N-N) D (N-N)<#” is controlled by 42

Therefore, the performance of the search process is highly dependent on 2
e A small »° may result in a ellipsoidal region that fails to contain the solution.
e A too large value for y° may result in high time-consuming for the search process.

Search with enumeration: When the number of required candidates is at most

n+1 (with n=dim(N)), the following procedure can be applied to set the value »°:

« The best determined ambiguity is rounded to its nearest integer. The remaining
ambiguities are then rounded using their correlations with the first ambiguity:

N, =nint [Nn]

N, =nint[ N, ]= nint[zifn_l o, o7 (N,-N, )] based on the
e bootstrapping
estimator

N, = nint[ﬁnll} = nin{](fl —g O-Nl,Ni\IO-I_VjI (Ni, —Ni)}

- In each step of the conditional rounding procedure, two candidates are taken: The
nearest and second-nearest, and conditional rounding is proceeded in both cases.

« If p candidates are requested, the values of cost function ¢(N) are ordered in
ascending order and #?is chosen equal to the p-th value.

If more than n+1 candidates are requested, the volume of the search ellipsoid can be used
([RD-6]).



Search with shrinking technique: practical example

This is an alternative to the previous strategy, based on shrinking the search
ellipsoid during the process of finding the candidates.

In the next example, we have to choose 6 candidates:

Round “"Ambiguity-2” to the second near integer

Fist candidate is th_e and round the new conditional estimate for
bootstrapped solution “Ambiguity-1”

Step 1

I P I
| e |
« il . o
gnli o e é-*o T ot
gl ni
-3 2/ -1 0 1 2 3 -2 -1 0 1 2 3
/ /A’lbiguity 1 /3 Ambiguity 1
The other 5 candidates are found by The candidate with the

choosing the conditional “Ambiguity-1” to largest y?is removed.
the 2nd, 3rd 4th gand 5t nearest integers
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Step 4 Example and pictures
— from [RD-6]

3rd nearest

w

Ambiguity 2
[

|
N

|
w

|
w

3 2 1 0 1_2 3 3 2 1 0 1 2 3
step5 | 4t nearest is Step 6

[ outofthe sl N

Lo region.

@%]

Ambiguity 2
o - N

|
=y

. . . . ] Nomore . . . . . . .
_3 ..... ..... J ..... I Candldatesat _3JJII_
-3 2 -1 0 {1 thisstep 3 -2 -1 0 1 2 3

Ambiguity Ambiguity 1

Thence, the best 6 candidates are found (in the ISL sense). The one

with the smallest cost function ¢(N) value is the actual ISL solution.
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Acceptance Test

The integer ambiguity solution corresponding to the smallest RMS residuals
is used to select the candidate.

However if two or more candidates give roughly similar values of RMS, the
test can not be resolutive.

=>A ratio test (of 2 or 3, depending on the algorithm) between the two
smallest RMS is often used to validate the test.

If the ratio is under these values, no integer solution can be determined
and is better to use the floated solution.

RMS:HN—N

L =yJ(N-R) B (N-R)

N

www.gage.upc.edu @ J. Sanz & J.M. Juan
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e Examples with MATLAB (octave)

LAMBDA software package

Matlab implementation, Version 3.0

Sandra Verhagen and Bofeng Li

] .
TUDelft

Mathematical Geodesy and Positioning, Delft University of Technology

Curtin University

Note:

This document uses
the transposed
matrix ZT, but the
principle is the
same.

www.gage.upc.edu
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e Examples with MATLAB (octave)

_ _ -1
load large = Q,a Q=P =Wy
[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);

imagesc(Q) imagesc(Qz)
colorbar colorbar

Qz=Lz’ *diag(Dz)*Lz
49
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[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a); [z=zt’|

) [L,D] = 1ldldecom(Q)
Qz=Lz’ *diag(Dz)*Lz
Q=L’*diag(D)*L

az= Z*a Qz= Z*Q*Z’

a= inv(Z)*az Q= inv(Z)*Qz* inv(Z’)

Z =
3 0 -4 -3 -5 -4 -4 2 -2 1 -3 1
-0 -1 1 -1 -2 4 4 -3 4 1 0 1
3 5 -2 -2 1 -1 -2 1 -1 -4 -1 -1
-5 -2 3 2 4 3 -3 -2 -2 1 -3 -1
4 5 1 4 2 6 5 2 -4 1 2 -4
-8 -4 1 0 0 -3 2 3 2 -1 -9 4
4 -7 -0 1 (% -4 -1 -7 3 -5 -1 2
2 -1 -8 -1 2 -4 1 2 -4 2 2 -2
-3 2 3 10 -8 -2 -5 0 -4 1 -4 0
-1 6 8 -1 2 1 2 7 3 -2 6 1
-8 7 -8 3 -6 -1 1 (% (% 3 -1 -1
8 1 6 -3 5 4 -5 -3 0 -0 1 -3
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load large =2 Q, a

Integer rounding

round(a)

[ -28491 65753 38830 5004 -29196

-298 -22201 51236 30258 3899 -22749

Decorrelation + Integer rounding

[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a)

azfixed=round(az);
afixed=iZ*azfixed

[ -28537 65473 38692 4939 -29228

Decorrelation + bootstrapping

-504 -22237 51018 30150 3849 -22774

[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a)

azfixed=bootstrap(az,Lz);
afixed=iZ*azfixed

[ -28451 65749 38814 5025 -29165

-278 -22170 51233 30245 3916 -22725

-159]

-320]

-144]

www.gage.upc.edu

@ J. Sanz & J.M. Juan

51



@

Decorrelation + bootstrapping

[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a)
azfixed=bootstrap(az,Lz);
afixed=iZ*azfixed

[ -28451 65749 38814 5025 -29165

-278 -22170 51233 30245 3916 -22725

Decorrelation + ILS with enumeration search

[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);

[azfixed,sgnhorm] =
afixed=iZ*azfixed

-28451
-28279
-28727
-28546
-28229
-28365

65749
65862
65935
66062
65518
65586

38814
38805
39032
39027
38583
38683

5025
5170
4844
4998
5197
5084

lsearch (az,Lz,Dz,6);

-29165
-29061
-29337
-29228
-29056
-29124

-278
-192
-178

-83
-500
-418

-22170
-22036
-22385
-22244
-21997
-22103

51233
51321
51378
51477
51053
51106

30245
30238
30415
30411
30065
30143

3916
4029
3775
3895
4050
3962

-22725
-22644
-22859
-22774
-22640
-22693

-144]

-144
-77
-66

8

-317

-253

¢(N)
> 15.0
> 316
> 33.9
> 345
> 347
> 355

www.gage.upc.edu
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@

Decorrelation + bootstrapping

[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a)
azfixed=bootstrap(az,Lz);
afixed=iZ*azfixed

[ -28451 65749 38814 5025 -29165

-278 -22170 51233 30245 3916 -22725

Decorrelation + ILS with search-and-shrink

[Qz,Zt,Lz,Dz,az,iZ] = decorrel (Q,a);

[azfixed,sgnhorm] =
afixed=iZ*azfixed

-28451
-28279
-28727
-28546
-28229
-28365

65749
65862
65935
66062
65518
65586

38814
38805
39032
39027
38583
38683

5025
5170
4844
4998
5197
5084

ssearch (az,Lz,Dz,6);

-29165
-29061
-29337
-29228
-29056
-29124

-278
-192
-178

-83
-500
-418

-22170
-22036
-22385
-22244
-21997
-22103

51233
51321
51378
51477
51053
51106

30245
30238
30415
30411
30065
30143

3916
4029
3775
3895
4050
3962

-22725
-22644
-22859
-22774
-22640
-22693

-144]

-144
-77
-66

8

-317

-253

¢(N)
> 15.0
> 316
> 33.9
> 345
> 347
> 355

www.gage.upc.edu
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